Faculty of Biological Sciences

Prof Christine Foyer

PhD - 1977
Professor in Plant Science
School of Biology

Contact:  Manton 9.04, +44(0) 113 34 31421, email address for  

You can read more about Prof Foyer's interests here:

 Thomson Reuters Highly Cited Researcher Logo

The Foyer lab is interested in the regulation of growth and development under optimal and stress (drought, chilling, high light, aphid infestation) conditions, with a particular focus on how cellular reduction/oxidation (redox) homeostasis and signalling interact with phytohormone–mediated pathways, particularly involving abscisic acid, auxin and stigolactones. Research focuses on ascorbate and glutathione as key regulators of plant responses to stress and on how redox processes associated with primary metabolism particularly photosynthesis and respiration regulate gene expression.
The Foyer lab uses multidisciplinary approaches incorporating -omics technologies, molecular and biochemical techniques and whole plant physiology to study the relationships between primary metabolism, gene expression and growth under optimal and stress conditions. The lab tackles research problems of intrinsic scientific interest but is always mindful of the needs of agriculture and food security. In addition to undertaking fundamental studies on model plant species such as Arabidopsis thaliana, research in the Foyer lab includes translational aspects, particularly in relation to enhancing stress tolerance in crop species such as soybean, maize and barley.
Christine Foyer also directs the Human Health & Food Security in Sub-Saharan Africa (Africa College; http://www.africacollege.leeds.ac.uk) at the University of Leeds, which works in innovative partnerships with African institutions in capacity building and the translation of research results into plant improvement programs.
The following projects are currently in progress in the Foyer laboratory:
  • The identification of proteins involved in the import of reduced glutathione into the nucleus and the role of glutathione in the nucleus particularly during the cell cycle.
  • The characterisation of redox processes involved in the control of seed germination and bud dormancy, particularly those that influence the cell cycle.
  • The investigation of the role of glutathione in the control of root architecture, particularly interactions with abscisic acid, auxin and stigolactones.
  • The identification of proteins involved in redox signal transduction in the chloroplasts and mitochondria, such as Whirly1 and senescence associated gene (SAG)21. These processes are studied in transgenic barley plants with altered expression of Whirly1 and SAG)21.
  • The roles of cysteine and serine proteases, and cysteine (OCI) and serine protease inhibitors in the control of leaf (barley, soybean) and nodule (soybean) senescence. Transgenic barley and soybean plants have been produced with constitutive expression of protease inhibitors.
  • The influence of high light stress on local and systemic resistance to aphids.

Faculty Research and Innovation

Studentship information

See also:

Modules managed

BLGY3173 - Plant Growth, Resources and Food Security

Modules taught

BIOL5294M - MSc Bioscience Research Project Proposal
BIOL5392M - Bioscience MSc Research Project
BLGY1303 - Tutorials for Biology and Genetics
BLGY2100 - Enhanced Study Skills for Biologists
BLGY2163 - How Plants Work

Mr James Cooper  (Visiting Research Fellow)


Sarah Alomrani (Primary supervisor) 95% FTE
James Cooper (Primary supervisor) 90% FTE
Ambra De Simone (Primary supervisor) 90% FTE
Nurhayati Razak (Primary supervisor) 90% FTE
Daniel Shaw (Primary supervisor) 90% FTE
Catriona Walker (Primary supervisor) 95% FTE
Robbie Gillett (Co-supervisor) 10% FTE
Rakesh Tiwari (Co-supervisor) 25% FTE