Faculty of Biological Sciences

Research Bulletin

New project to develop 'smart' pesticides

27th April 2015

University of Leeds researchers are playing a key role in an international collaboration to develop new, eco-friendly pesticides.

New project to develop \'smart\' pesticidestitle=

 

The €7 million effort, funded by the European Union’s Horizon 2020 fund, will focus on creating “smart” alternatives to traditional insecticides targeting moths, locusts, aphids, flies, and beetles.

In place of the old approach of trying to annihilate insect populations with toxic chemicals—which often has unwanted environmental and health effects—the scientists will be intervening much more precisely in insects’ physiologies or even psychologies.

Professor Elwyn Isaac from the University of Leeds' Faculty of Biological Sciences, who will lead Leeds’ work, said: “Some of the established pesticides have already been banned and there are concerns about interference with pollinators by other chemicals. We have a gap in our armoury. Our approach will be more subtle than just killing insects. We might, for instance, be changing their mating patterns or appetites to ensure populations do not take hold.”

The project will focus on neuropeptides – small protein-like molecules that help insects’ brains and tissues communicate with each other. By developing artificial molecules to mimic these molecules they plan to turn the pest insects’ own hormones against them by altering their behaviour or physiology.

The scientists will be exploring different ways of influencing these systems in order to impair the insects’ ability to inflict damage, including:

  • reducing insects’ fitness by interfering with fat mobilisation, which is important for locusts’ swarming behaviour,
  • changing the neuropeptides that control the pheromones moths release to attract mates and tell each other where sources of food are located,
  • Altering neuropeptides that affect the balance of fluid, ions and water in pests. Insects have a simple kidney system functionally similar to humans. Preventing them from losing water when they need to, or forcing them lose it when they shouldn’t, will make them sick.

The economic cost of pests is extremely difficult to estimate but biological threats such as insects and disease account for around 40% of all crop losses globally. By 2017, the world is expected to spend more than $65 billion annually on pesticides.

The project, called nEUROSTRESSPEP, is led by the University of Glasgow and involves Leeds, The Scottish Government, Forest Research, The Pirbright Institute, Oxitec Ltd, Knowledge Transfer Network Ltd, Katholieke Universiteit Leuven, Universitat Gent, The Agricultural Research Organisation of Israel, Stockholms Universitiet, Universitaet Zu Koeln, the University of Cape Town, and Bruker Daltonik GmbH.

Professor Isaac is an authority on insect peptides and has previously worked with the US Department of Agriculture to rationally design peptides that are active in insects. He will help identify appropriate targets to disrupt development and reproduction in pest species and help design and develop of metabolically stable peptide analogues that can survive degradation in the environment and in the body of the insect pest. 

He said: “The ultimate objective of the project is to promote food safety and sustainable agriculture. Neuropeptide-based insect control agents will be much more precisely targeted than traditional insecticides and should be greener.”

The project, funded through Horizon 2020 – the EU’s research and innovation fund – will get underway in June and run for four years.

Professor Shireen Davies, of the Institute of Molecular, Cell & Systems Biology at the University of Glasgow, who is coordinating the project, said: “Insects are the most diverse class of life on earth, and different insects can be essential for, or highly damaging to, agriculture, horticulture and forestry. There is a pressing need, not just for new insecticides to combat resistance in pests, but for more specific, ‘greener’ insecticides that target damaging insects while sparing beneficial ones.”

 

Further information;

Professor Isaac is available for interview. 

Contact Chris Bunting, Senior Press Officer, University of Leeds, phone: 0113 343 2049 or email c.j.bunting@leeds.ac.uk.

Bugs being targeted:

Moths – Heliothis peltigera, Spodoptera littoralis which represent a large variety of Heliothinae and Spodoptera moth species and are world-wide native agricultural pestsPlutella xylostella, diamondback moth, the most important world-wide pest of Brassicas.

Locusts – Locusta migratoria and Schistocerca gregaria, alien swarming agricultural pest of the Southern Mediterranean, Middle East, Asia and Africa, including Southern Africa, and constantly monitored by the FAO.

Aphids – Acyrthosiphon pisum, world-wide native agriculture pest and a model with sequenced genome for horticulture pests including Macrosiphon rosae, which is detrimental to roses, apples and pears in the vital South African fruit industry and the same species as the green rose aphid in Europe; and Myzus persicae, a world-wide agricultural and horticultural pest which favors ready transport on plant material. 

FliesDrosophila suzukii, an alien horticulture pest in Europe and USA. Spread of D. suzukii is currently uncontrolled by EU regulatory authorities thus novel biocontrol is urgently needed. Ceratitis capitata, the Mediterranean fruit fly (medfly), is also capable of causing extensive damage to a wide range of fruit crops across the Mediterranean. 

Beetles – some species are also pests and include the flour beetle, Tribolium castaneum (pest of stored grain) and pine weevil (Hylobius abieti), a long-term native pest of spruce and pine, severely affecting forestry production and causing significant financial losses in the EU. 

View full article


Recent Grants

Dave Westhead and colleagues in Experimental Haematology, Cancer Research UK (Jan 2015), £700,521

Sheena Radford, Mark Harris, Peter Stockley, Alan Berry, Alex O'Neill, Thomas Edwards, Adrian Goldman, Anastasia Zhuravleva, Wellcome Trust (Jan 2015), £443,015

Bill Kunin, EU (Jan 2015), £157,490

John Colyer, Leeds Teaching Hospitals Charitable Fund (Jan 2015), £40,000

Chris Hassall, Royal Society (Dec 2014), £14,500

Ryan Seipke, Royal Society (Nov 2014), £13,700

Alan Berry, Wellcome Trust (Oct 2014), £749,865

Ian Hope, Marie-Anne Shaw, BBSRC (Oct 2014), £396,565

Alison Ashcroft, Peter Stckley, Sheena Radford, Nic Stonehouse, David Brockwell, Darren Tomlinson, BBSRC (Oct 2014), £340,937

Les Firbank, Joe Holden, BBSRC (Oct 2014), £210,302

Darren Tomlinson and colleagues in Chemistry and Pathology, anatomy and Tumour Biology, Dr Hadwen Trusy (Oct 2014), £194,475

Paul Knox, EU (Oct 2014), £167,229

Martin Stacey and colleagues in Medicine & Health, Pfizer (Oct 2014), £90,453

Darren Tomlinson and colleagues in Experimental Oncology, YCR (Oct 2014), £69,480

Andrew Macdonald, Jamel Mankouri, Kidney Research Fund UK (Oct 2014), £58,878

Mike McPherson and colleagues in Dentistry and Engineering, Wellcome Trust (Oct 2014), £58,437

Dave Westhead and colleagues in Experimental Haemotology, Leukaemia & Lymphoma Research (Sep 2014), £281,424

Emmanuel Paci and colleagues in Chemistry, BBSRC (Sep 2014), £636,759

Andrew Peel, BBSRC (Sep 2014), £371,598

Lars Jeuken, Stephen Evans, BBSRC (Sep 2014), £333,684

Lars Jeuken, BBSRC (Sep 2014), £313,463

Michelle Peckham, Mark Harris, Rao Sivaprasadarao, Eileen Ingham, Nic Stonehouse, Nikita Gamper, Wellcome Trust (Sep 2014), £192,763

Neil Ranson, BBSRC (Aug 2014), £355,253

Stuart Egginton, BHF (Aug 2014), £271,094

Darren Tomlinson, Mike McPherson, Technology Strategy Board (Aug 2014), £98,665

Peter Henderson, Leverhulme Trust (Aug 2014), £15,222

Mike McPherson (and colleagues in the School of Chemistry), EPSRC (Jul 2014), £819,880

Peter Stockley, Neil Ranson, BBSRC (Jul 2014), £455,787

Sheena Radford, Univesity of Michigan (Jul 2014), £138,452

Ryan Seipke, British Society Antimicrobial Chemistry (Jun 2014), £11,960

John Trinick, BHF (Jun 2014), £222,614

Chris West, Leverhulme Trust (Jun 2014), £181,241

Jon Lippiat, Darren Tomlinson, BBSRC (May 2014), £125,174

Christine Foyer, Royal Society (May 2014), £24,000

Recent
News

New project to develop 'smart' pesticides

27th April 2015

University of Leeds researchers are playing a key role in an international collaboration to develop new, eco-friendly pesticides.


A bit of hot water can prevent the spread of invasive species

20th April 2015

When it comes to invasive species in the United Kingdom, a few ounces of hot water may be worth nearly £2 billion in annual management costs, according to a new study.


Parasite turns shrimp into voracious cannibals

18th March 2015

Parasites can play an important role in driving cannibalism, according to a new study.

 


New study on female fruit flies published by FBS Professor

17th March 2015

Female fruit flies may be more likely to reject the sperm of mates that are inferior, an international research team has found.


Uniting the women of science and engineering

10th March 2015

Three University of Leeds academics have been honoured with a Medical Research Council (MRC) Suffrage Award.


FBS Researchers volunteer to fight Ebola

17th February 2015

Four University of Leeds researchers have volunteered to fight the Ebola epidemic in Sierra Leone.


FBS Researchers discover viral code

4th February 2015

Researchers have cracked a code that governs infections by a major group of viruses including the common cold and polio.


Stroke damage mechanism identified

30th January 2015

FBS Researchers have discovered a mechanism linked to the brain damage often suffered by stroke victims—and are now searching for drugs to block it.


Impact
Stories

Dr Simon Goodman has investigated the disease risks to the native Galapagos fauna.

Professors Urwin and Atkinson have developed three novel technologies for nematode control.

Professor Tim Benton has been appointed to the post of UK Global Food Security Champion.

Professor Sheena Radford has undertook research to determine how peptides self-aggregate and form fibrils under certain conditions.

All impact stories